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Equations for the calculation of a number of variance and covariance terms related to best-plane 
parameters are given. They include expressions for the uncertainties of the orientation of the best plane 
and allow the calculation of the variances and covariances for the angles between the plane normal 
and the axes of any chosen coordinate system, as well as for the plane-to-origin distance. Another ex- 
pression gives the standard deviation of the dihedral angle between two planes; it includes the case in 
which the two planes share atoms. All expressions are for isotropic positional variances; effects of 
atomic positional correlations are not included. A numerical example is given with intermediate results, 
to provide checks for computer programs employing these expressions. 

Introduction 

The standard deviations of and the covariances be- 
tween parameters associated with least-squares planes 
are functions of the positional standard deviations of 
the atoms to which the planes have been fitted. The 
pertinent relationships may be derived by applying the 
standard error propagation formula. In this derivation 
the methods of Gibbs dyadics can be very helpful 
(Waser, 1973a). Below are given formulas for the 
standard deviations of the distance of a best plane from 
the origin and of the direction of the plane normal, as 
well as for the covariances among these quantities. 
We also present a formula for the standard deviation 
of the dihedral angle between two planes, including the 
case in which these planes have atoms in common. 
While our results assume that the positional variance- 
covariance matrices of the individual atoms are iso- 
tropic and that there are no correlations among the 
coordinates of the different atoms, it is possible to 
generalize the results given so as to take into account 
anisotropic positional covariances of the atoms as 
well as correlation among atomic coordinates (Sands, 
1966; Waser, 1973a). For purposes of checking com- 
puter programs we also provide a numerical example 
concerning a triclinic crystal, giving some of the inter- 
mediate results. 

Formulation 

The parameters of a best plane can be obtained by 
solving an eigenvalue problem (Schomaker, Waser, 
Marsh & Bergman, 1959; Hamilton, 1961) in which 
the plane normal turns out to be parallel to the eigen- 
vector associated with the smallest eigenvalue, which 
is the weighted sum of the squares of the distances of 

* Con t r i bu t i on  No.  4656. 

the atoms from the plane fitted to them, that is, the 
minimum value of the quantity that is minimized by 
the least-squares procedure. The other two eigenvectors 
of the eigenvalue problem are perpendicular to what 
may be called the worst plane and to an intermediate 
plane (i.e. the sum of the weighted residuals assumes a 
maximum in the first case and an intermediate sta- 
tionary value in the second). 

It is convenient to introduce an orthogonal coor- 
dinate system, referred to as the coordinate system of 
the plane and described by the unit vectors el,e2,e3, 
which are chosen parallel to the eigenvectors asso- 
ciated with the worst, intermediate and best plane. (In 
the case that the two larger eigenvalues are equal, el 
and e 2 are chosen along any two perpendicular direc- 
tions in the best plane.) In this coordinate system the 
unit vector m associated with the best plane has the 
components (ml,m2,m3)=(O,O, 1), and we may de- 
scribe the uncertainty in the orientation of the best 
plane in terms of the variances and covariances relating 
to ml and m2, because all variations of m must be 
perpendicular to m. In fact the variances of ml and m 2 
are, respectively, equal to the variances of the angles 
~p~ and (o2 between m and e~ and m and e 2, angles that 
have expectation values of 90 ° . For example, 
coy (m, m2)=cov (tp1,~2). All covariance terms asso- 
ciated with m3 are zero, and all of the sums used later 
involving covariance terms of the mi extend over 
i=  1,2 only. The situation regarding the orientation of 
a unit vector such as m is further illuminated by noting 
that only two of its components are independent. This 
implies relationships among the covariances of its three 
components in any arbitrary coordinate system. Thus 
if nj ( j=  1,2, 3) are the components of m in the frame- 
work of the crystal axes aj (with g~j = at .  a j), it can be 
shown that 

~ nlg,j coy (nk, ns)=0 k =  1,2,3 (1) 
J 
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Moreover, while the standard dcviation o-(d) of the 
distance d of the best plane from the origin is often 
all that is quoted, the covariance terms cov (d, nj) need 
not be negligible. These terms satisfy a relationship 
similar to (1), 

~ n~gij cov (d, nj)=O. (2) 
/ j 

Relationships similar to (1) and (2) exist when other 
axes of reference are used, and also among covariances 
referring to the directional cosines ~,j of m relative to 
the aj or to any other axes. 

The results of the error analysis presented below 
reflect the direct influence of the (isotropic) positional 
standard deviations o-j of the atoms j defining the best 
plane. They depend on the weights wj associated with 
these atoms only inasmuch as these weights are deter- 
mining elements in defining this plane. These weights 
need not be governed by the o'~ and may be assigned 
in any suitable or convenient way, including the fre- 
quent practices of choosing them to be inversely pro- 
portional to the atomic positional variances in a direc- 
tion perpendicular to the plane to be fitted or, alterna- 
tively, of assigning equal weights to all the atoms that 
may define the plane, even though the locations of the 
heavier atoms are usually better determined than those 
of lighter atoms. The choice of weights is simply a 
matter of defining the desired 'best' plane and does not 
affect the error analysis given below. However, as will 
be seen, some cancellation occurs when the wj are 
simply made proportional to 0-7 2 . 

Our formulas reflect only in a roundabout way [such 
as the appearance of (X~) in denominators, see e.g. 
(7) and (15)] how well the chosen plane fits the atoms. 
We remark that it is perfectly appropriate to consider a 
'best' plane for a severely non-planar array of atoms, 
such as a puckered ring; the parameters of such a plane 
are completely defined (except in extreme cases, such 
as P4 or cubane) by the positions and weights of the 
atoms, whereas the variances and covariances of the 
parameters of the plane depend crucially on the 
variances in the positions of the atoms. In such a 
situation the quality of the fit of the plane can be 
discerned, as in any other case, from a 'chi-squared' 
test, by evaluating the sum ~ 2 2 dj/aj, where dj is the 
distance from a t o m j  to the plane and aj is the standard 
deviation in the position of atom j in the direction 
parallel to the plane normal. 

We now turn to definitions of the symbols not al- 
ready explained. We denote by x~,,xz~,Xs~ the coor- 
dinates of atom s with respect to the axes e~,ez, e3, the 
origin being taken at the origin of the unit cell, and 
by X~s, Xz,,X3s the coordinates of the same atom in a 
similar coordinate system with the origin at the cen- 
troid of the group of atoms under consideration; i.e., 
X~=Xis-(X~). The symbol ( )  denotes the mean 
value of a quantity, as in 

{x,}=( WsX,s)/  (3) 

o r  

<X~>=( ~ w, XZ~.O/~ w,-[wXZd/[w] (4) 
g s 

which implicitly define the bracket sum symbol [] of 
Gauss. In particular we have (X~X/>=0 when i#j ' ,  
because the coordinate system of the plane is erected 
by eigenvectors. By { } we abbreviate sums of the kind 

{ x ,  ) = w dsx,, (5) 
s 

{XiXj} = ~ wZaZX~Xj,. (6) 
$ 

Note that the last quantity is not necessarily zero 
when i¢j. 

The variances and covariances referred to earlier 
are then given by the following expressions: 

aZ(mi)-cov (m~,mi) 

coy (ml,mz)= 

1 {X 2}+{X3 z} i=1,2 (7a) 
[wy ((X~)-(X~))" 

[w]2 ((XZ)_(-X2~-(-(XZz)_(X~-)) (7b) 

o'2(d) = ~ (xi) (xj) cov (mi,mj) 
i , j  

+ [w] 21 ([wZa2 ]_2 ~ (X~)--(X~)j(xi) {Xi} ] (8) 

COy (d,m,)= ~ (xk) cov (m,,mk) 
k 

1 {X,} 
- [w] ~- (X~) ±- (X~)  (9) 

where the sums in (8) and (9) cover just the indices 
1 and 2. 

When the weights ws are taken to be proportional 
to a~ -2 there is some simplification. In this case { . . .  } = 
[w] ( . . . ) ,  and since ( X 1 ) = ( X 2 ) = ( X ,  Xz)=0,  we 
have cov(nh,m2)=0.  Moreover some terms in all 
formulas involving d become zero. 

It may be of interest to calculate the covariance 
matrix of the direction cosines Yai of the plane normal 
m relative to any set of three axes et (which may but 
need not be the crystallographic axes a~ or their recip- 
rocals b~), as well as the covariance terms among the 
Y3~ and d. If the quantities y~j are the cosines of the 
angles between the directions ei and ej then 

coy ()'ai,)'a j) = ~ ~'k~ Ytj coy (mR, nit); i,j---- 1,2, 3 (1 O) 
k , l  

and 

Cov(d,)'aj)=~,)'kjCOV(d, mR). (11) 
k 

[Here and in (12) and (13) the sums over k and l 
extend over 1 and 2 only.] Similarly, if the quanti- 
ties n~ are the components of the unit vectors e~ along 
the axes e j, so that e~ = ~ n~cj, then 
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coy (n3i,n3~)= ~ nk~n,j cov (mk, mt) (12) 
k, 1 

cov (d, n3~) = ~ nl,~ cov (d, mk). (13) 
k 

These quantities satisfy the relationships (1) and (2) 
with ng = r/3~ and gti = ci • ci. 

Next, we consider two planes and the angle 0o be- 
tween the two plane normals. We designate all quan- 
tities specifically associated with the second plane by 
primes. Examples are the unit vectors ej ( j=  1,2, 3) of 
the coordinate system of the second plane, the weights 
wj, the coordinates Xj~, etc., and the variance-co- 
variance matrix cov (m£,m2) pertaining to the plane 
normal m'. The formula for the standard deviation of 
00 includes contributions from the covariance matrix 
cov (m~, mj) (i,j= 1,2), which is non-zero when the two 
planes considered have atoms in common. In the 
formula for cov (m~,mj) we use the subscript c to 
denote summation over common atoms, as in 

{X, Xj}c= ~ WsW;aZ~X, sXjs. (14) 
common 
atoms s 

Other sums, in the denominators, extend over all atoms 
in one or the other plane, depending on whether or not 
a prime appears. For example, in [w] and (X~) the 
sums extend over all atoms on the first plane, and in 
[w'] and (X'~ 2) over all atoms of the second plane. With 
these abbreviations we find the following expression 
for cov (mi,mj)" 

satisfactory for most purposes is given by the ex- 
pression 

°2(0) = <02) - <0 )2 >_ <02) _ 00 ~ 

= ~ (a2(m~) + a2(m~)) 
i 

- 2 ~ cov (m,,mj)ei. ej. (17) 
• . 

i , j  

It can be shown that in special situations equations 
(7), (15), and (16) yield results that are identical with 
results obtained in other ways. One of these relates to 
the torsion angle associated with a sequence of atoms 
ABCD, that is, the angle between the normals upon the 
planes ABC and BCD. In the case of equal bond dis- 
tances A-B, B-C, and C-D, but arbitrary bond angles 
and (isotropic) positional standaid deviations the 
present results are algebraically identical with those 
derived by Stanford & Waser (1972); the establishment 
of algebraic identity looks cumbersome in more general 
cases, but both approaches have yielded identical 
numerical results in a number of tests. Another special 
situation is that of two planes defined by the rectangles 
A1AzBIB2 and BIB2CIC2, which share the corners BI 
and B2. Let the positional standard deviations for the 
two 'atoms' in each pair A~-Az, BI-B2, and C1-C2 be 
equal. Then the variance for the dihedral angle be- 
tween the two planes is found to be equal to one-half 
the variance of the 'bond angle' A~B~CI; the factor -} 
reflects that twice as many atoms are involved in de- 
fining the dihedral angle. An analogous result is ob- 

cov (mi,mj)= {XaXs}c(e,. ej)+ {XaX~}c(e~. e~)+ {XjX~}c(ea. ej)+ {XiXj-}~(%. e~) 
. . . . . . . . . . . .  [ w l  [ . , ' !  . . . . . . . . .  

(15) 

For the variance of the angle 00 between m and m' 
we obtain 

1 
• ~ (COY (mi,mj) (ei. e3) (ej. e3) az(0°)= sin 2 00 i. j 

+cov (m~,mj) (e3 . el) (ea . ej) 
+ 2 cov (m,,mj) (e~. e~) (e3. ej)). (16) 

In the case that 00 is zero this expression becomes an 
undetermined 0/0. Moreover, the linearization in- 
volved in the derivation of the results given becomes 
untenable when the magnitude of 00 is comparable 
with that of a(m~) or a(ml), i=  1,2. That is to say, when 
00 is large compared to these standard deviations, the 
difference between the actual 0 and its mean 00 is 
approximately normally distributed, assuming that 
this is the case for the quantities m~ and m~. When 00 
becomes comparable to the standard deviations cited, 
the distribution of 0 about its mean is no longer ap- 
proximately normal, and indeed this mean is no longer 
00 but larger; we have not been able to find a closed 
expression for (0 )  in the circumstances described. 
However, an upper bound for a2(0) that should be 

tained for a 'butterfly' arrangement of four 'atoms' in 
two isoceles triangles AB1B2 and BIB2C. 

It should be emphasized that our assumptions of iso- 
tropic positional variances and of the absence of co- 
variances may not be justified; more general formulas 
that apply in such situations are available (Waser, 
1973a). A particular problem arises in polar space 
groups, where one or more coordinates of the origin 
are arbitrary. It is the usual custom to define these 
coordinates by holding fixed the cooresponding coor- 
dinates of one atom; as a result, the variances and co- 
variances involving these fixed coordinates are zero, 
while variances and covariances involving the re- 
maining atoms may be larger than normal (Sands, 
1966). Even in these cases, we expect that the formulas 
in this paper will yield good approximations to the cor- 
rect results, provided that reasonable values are assigned 
to the standard deviations (Templeton, 1960; Waser, 
1973b). 

A numerical example 

As an example we choose the joined five- and six- 
membered rings of the indole portion of indomethacin 
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Table  1. Unit-cell dimensions 

a =  9"295 (2) A cx= 69.38 (1) ° 
b=  10.969 (1) fl= 110.79 (1) 
e =  9.742 (1) y 92.78 (1) 

Tab le  2. Atomic coordinates, assigned weights, 
and average isotropic standard deviations (A) 

The five-ring comprises atoms N(1), C(2), C(3), C(4) and C(9); 
the six-ring comprises C(4)-C(9); there are two common 
atoms, C(4) and C(9). 

x y z w a x  10 s 
N(1) 0.4331 0.7923 0.4599 4755 153 
C(2) 0.5732 0.7309 0.4793 2921 190 
C(3) 0.5972 0.6103 0.5918 3087 186 
C(4) 0.4746 0.5926 0.6520 3265 180 
C(5) 0-4478 0.4881 0.7711 2770 197 
C(6) 0.3193 0.5011 0.8052 2508 213 
C(7) 0.2200 0.6166 0.7244 1975 227 
C(8) 0.2461 0.7202 0.6077 2268 217 
C(9) 0.3729 0.7063 0.5694 3262 183 

(Ki s t enmache r  & Marsh ,  1972). The  tr icl inic crystals  
of  this c o m p o u n d  con ta in  two molecules  in the uni t  
cell in space g roup  P ] .  Ful l -mat r ix  least-squares  re- 
f inements  were carr ied out  with 3678 counter -col lec ted  
Ni-fi l tered Cu K~ reflections, with a final value o f  
0.059 for R. In the fol lowing we repor t  in te rmedia te  as 
well as final c o m p u t a t i o n a l  results,  and  include,  for  
purposes  of  checking  compute r  p rograms ,  more  signi- 
ficant figures t han  we necessari ly believe to be signifi- 
cant.  The  values of  the a~ used are averages of  axe, 
aye, and  az~ given by the least-squares  ref inement ,  while 
the weights  w~ were to some extent  chosen a rb i t ra r i ly ;  
they are very roughly  equal  to const/a~±, where the 
a~l are pos i t iona l  s t anda rd  devia t ions  in a d i rect ion 
pe rpend icu la r  to the p lane  considered.  (A ca lcula t ion  
of  exact values of  the a~. would  require  a knowledge  
of  pos i t iona l  covar iances  as well as var iances ;  see, 
e.g., Hami l ton ,  1961.) 

It wou ld  hard ly  have made  a difference, in the pres- 
ent  example,  if  we had  used w ~ = c o n s t / a  2, but  we 
chose otherwise  so as to i l lustrate  all aspects of  our  

Tab le  3. Atomic coordinates in plane system (el,ez, e3) relative to crystal origin (xi) and to plane centroid (Xi) 
Plane 1 xt xz x3 X~ )(2 
C(4) -2-3165 -0"1728 10.1524 1.0510 -0.7049 
C(9) -3"6561 -0"5843 10.1545 -0"2886 - 1.1164 
N(I) -4-4502 0.5879 10.1433 -1.0827 0.0558 
C(2) -3.5820 1.7067 10.1629 -0-2145 1.1746 
C(3) -2.3034 1.2600 10.1407 1.0641 0-7279 

Plane 2 
C(4) 2-0014 1.3926 10.1253 0.172l - 1.2010 
C(9) 3.0860 2.2799 10-1045 1.2567 -0.3137 
C(8) 2.8796 3-6503 10.1315 1.0503 1.0567 
C(7) 1.5781 4.1063 10.1198 -0-2511 1.5127 
C(6) 0.4856 3.2242 10.1085 - 1.3436 0.6305 
C(5) 0.6820 1.8640 10.1218 - 1.1472 -0.7296 

X3 
0.0024 
0"0045 
0-0067 
0.0130 
0-0092 

0.0073 
0.0135 
0.0135 
0.0017 
0.0095 
0"0038 

Table  4. Second-moment matrix [wXi Y~] 
Diagonal elements are eigenvalues. Off-diagonal elements differ ~om zero because of round-off-errors. 

Plane 1 Plane 2 
13082 -0"00146 -0"00009 16049 0.00269 0.00006 

-0.00146 1 1 3 6 8  -0.00035 0-00269 14554 0-00073 
-0.00009 -0.00035 1.0520 0.00006 0.00073 1.4563 

T a b l e 5 .  DPection cosines ofworst, interme~ate, andbest~lanenorma~,re~t ivetoc~stalaxesa,  b , c ( j= l ,2 ,3 )  
Plane1 Plane2 

j = l  j = 2  j = 3  j = l  j = 2  j = 3  
yls 0.25110 -0.74184 0-22009 0.11868 0.66838 - 0.45133 
y2s 0.93388 -0.03503 -0.63995 -0.94992 0.33644 0-53468 
y3j 0.25458 0-66967 0.73622 0.28908 0.66338 0.71443 

Table  6. Components of  these plane-system unit vectors in orthogonalized crystal system 
This system is defined by the unit vectors i,j,k, where i is in the (001) plane and perpendicular to b; j =b/b; k =i  x j. The direction 
cosines (and components) of m~, m2, and m3 are denoted by p~j, P2j, and P3j, where j =  1, 2, 3 refers to the orthogonalized axes. 

Plane 1 Plane 2 
/~aj 0.21537 -0.74184 0.63505 0.15128 0.66838 -0.72828 
/12j 0.93328 -0-03503 -0.35743 -0.93470 0.33644 0-11462 
/t3j 0.28740 0"66967 0"68480 0.32163 0"66338 0.67563 
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Table  7. Intermediate sums 

Plane 1 Plane 2 Plane 1 Plane 2 
[w] 17290 16048 
(xl)  -3.3675 1.8293 {3(1} -2.8156 -1.3839 
(x2) 0.5321 2.5936 {X2} - 1.0003 -0.3924 
(x3)=d 10.1500 10.1180 {X1X2} 0.47134 -1.19039 
(X~) 0.75664 1.00004 {X~} 141.91 176.00 
(X~) 0-65748 0.90690 {X~} 121.70 153.56 
(X])  6.0843 × 10-59.0747 × 10 -5 {X]} 0.011279 0.015842 

Table  8. Variances and covariances ( x l0  s) of  d, mx, m2, in A. 2, .A, x rad,  and rad  2 

Plane 1 Plane 2 
d m t  m2 d m t  m2 

d 1020-74 -277"89 49"57 781"65 124"25 187"32 
mt - 277"89 82"940 0"317 124"25 68"354 -0"510 
m2 49"57 0"317 94"200 187"32 -0"510 72"520 

Standard deviations. 
a(d) 0.00320 ~ 0.00280 ,~ 
a(ml) 0"000911 rad = 0.0522 ° 0"000827 rad = 0"0474 ° 
a(m2) 0"000971 rad = 0.0556 ° 0-000852 rad = 0.0488 ° 

Tab le  9. Variances and covariances ( × 106) among d and the direction cosines Y3j o f  the plane normal relative 
to the crystal axes a, b, e ( j =  1,2, 3) 

Plane 1 Plane 2 
731 732 733 731 732 733 

d(A) -0.23488 2.04410 -0.92879 - 1"63196 1"46070 0.44079 
731 0.87534 -0.18753 -0.51700 0.66516 -0-17451 -0.40745 
732 -0.18753 0"45776 -0"11282 -0.17451 0.38515 -0"07679 
733 -0"51700 -0-11282 0"42506 -0"40745 -0"07679 0"34902 

Table  10. Variances and covarianees ( × 106) among d and the direction cosines /~3j 
of  the plane normal relative to the orthogonal axes i, j, k ( j  = 1,2, 3) 

d(A) 
/t3t 
/-/32 
/133 

Plane 1 Plane 2 
~31 fl32 fl33 ~31 ~32 ~33 

-0"13590 2"04410 -- 1"94189 - 1"56296 1"46070 -0"69020 
0"86024 -0"16553 --0"19916 0"65067 -0"15602 -0"15656 

--0"16553 0-45776 -0"37817 -0"15602 0"38515 -0"30390 
-0"19916 -0"37817 0"45340 -0"15656 -0-30390 0"37292 

equat ions .  A n o t h e r  po in t  to no te  is t ha t  if, e.g., the 
c o m m o n  pract ice  of  set t ing w~=const/a]j_ is em- 
ployed,  a toms  c o m m o n  to two different  p lanes  m a y  
have different  weights  in the two-p lane  calculat ions .  
In  the example  below the c o m m o n  a toms  were ass igned 
the same weights  for  bo th  p lane  de te rmina t ions .  The  
pa ramete r s  involved are given in Tables  1-11. 

We  r emark  tha t  ne i ther  the five-ring nor  the six- 
r ing  is sa t isfactor i ly  p l ana r  in the example  given, since 
the r .m.s,  devia t ions  of  the indiv idual  a toms  f rom the 
leas t -squares  planes  are apprec iab ly  larger  t han  the i r  
pos i t iona l  s t a n d a r d  deviat ions.  Accord ingly ,  the di- 
hedra l  angle  between the two best planes,  and  the 
s t a n d a r d  devia t ion  of  this  angle,  do not  by themselves  
cons t i tu te  an adequa te  descr ip t ion  of  the re la t ionships  
a m o n g  the a toms  in the two rings. They  describe the 
re la t ionsh ip  between the best planes  o f  the two sets of  
a toms,  while say ing  n o t h i n g  abou t  how 'good '  these 
planes  are. 

Tab le  11. Cosines of  angles between the two plane 
coordinate systems 

e t .  e)= -0-92574 -0.37810 0-00621 
0-37808 - 0.92509 0.03544 

- 0.00766 0.03516 0.99935 

Angle between plane normals 0o = 2"065 ° [= cos-1 (e3. e3)] 
Common atom sums 

{XIX'j}, = - 6.67676 -- 40.37188 0.40302 
-54-18548 41.71748 0.36173 

0.21579 -0.14989 --0.001569 

Covariance matrix for the two plane normals. 
108coy (m, mj) = - 3.179 - 21-187 

- 29-685 25.209 

a2(co~ 00), disregarding common atom correlations, 
=0.2156× 10 -s 

a2(cos 00), including common atom correlations, 
=0.2856 x 10 -s 

a(Oo) = 0"085 °. 
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The title compound, Zn2(C10HI4N20)z(NCS)4, is triclinic, space group P1, with a= 10.387 (6), b= 
12.436 (6), c=7-835 (5) ,&, ~t= 108.4 (1), f l -  117.2 (1),) ,-  97.8 (1) °, Z =  1. The structure has been deter- 
mined from X-ray intensities collected on an automated diffractometer. The structure, solved by Pat- 
terson and Fourier methods and refined by least squares, consists of centrosymmetric dimers with 
tetrahedral coordination around zinc. The two tetrahedra of the dimer are held together by N,N- 
diethylnicotinamide molecules acting as bridges through pyridine N and amide O. Packing of the 
dimers is determined by van der Waals interactions only. 

Introduction 

Structural studies on metal complexes of N,N-diethyl- 
nicotinamide (DENA) were undertaken in order to 
define the ligand properties of this respiration stimu- 
lant. The structures of the following complexes have 
been determined so far: Cd(DENA)(SCN)z,  (I) 
[iz-( N,N-diethylnicotinamide-O,N)-di-p-thiocyanato- 
cadmium; Bigoli, Braibanti, Pellinghelli & Tiripicchio 
(1972)], Mn(DENA)2(NCS)z, (II) [di-p-(N,N-diethyl- 
nicotinamide-O,N)-diisothiocyanatomanganese; Bi- 
goli, Braibanti, Pellinghelli & Tiripicchio (1973a)], 
Zn(DENA)2(NCS)2(H20)2, (III) [diaquobis-(N,N-di- 
ethylnicotinamide)diisothiocyanatozinc; Bigoli, Brai- 
banti, Pellinghelli & Tiripicchio (1973b)]. In these 
compounds the complexes are octahedral but differ 
from one another in the disposition of the donor atoms 
and in the type and number of bridges. In (I) and (II) the 
DENA ligand forms one and two bridges respectively 
through pyridine N and amide O; in (III) the organic 
ligand is bound to the metal through pyridine N only. 
Crystals of (IIl), when left to stand in the presence of 
the mother liquor, change, with a complete trans- 
formation of the metal complex, into crystals of the 
title compound, Zn2(DENA)E(NCS)4, (IV). The coor- 
dination of the metal changes from octahedral to 
tetrahedral. 

In the present paper the results of the crystal struc- 
ture determination of (IV) are given. 

Experimental 

Preparation 
Crystals of Zn(DENA)2(NCS)2(HzO)z remain un- 

altered in the mother liquor for many days, then 
transform rapidly into the stable ZnE(DENA)2(NCS)4. 

Crystal data 
Compound: di-p-(N,N-diethylnicotinamide-O,N)- 

tetraisothiocyanatodizinc, Zn2(CIoH14N20)2(NCSL. 
F.W. 719.54. 

Unit cell: the parameters, determined from rotation 
and Weissenberg photographs and refined with data 
obtained on an automated single-crystal diffractom- 
eter (Cu Kc~, A= 1.54178 A), are: 
a-- 10.387 (6), b =  12.436 (6), c=  7.835 (5) A; 
~=  108.4 (1), fl=117.2 (1), ?=97.8 (1)°; 
V= 805.7 A 3 ; Z = 1 ; 
Dx = 1.483, Dm = 1"485 g cm-3; 
/z(Cu K~) = 44.96 cm-  1 ; F(000) = 368. 

Space group: P-((CI, No. 2) from the structure deter- 
mination. 


